
unrestricted  

résumé de flux de 
données 

CLEROT Fabrice 

fabrice.clerot@orange-ftgroup.com 

Orange Labs 



unrestricted  ENS RENNES 22 Septembre 2009 

data streams, why bother ? 
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massive data is the talk of the town ... 
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data streams, why bother ? 

data warehouse 
0.1 - 1 TB 

business 
oriented  

data mart 
10 GB 

service 
platform 

production 
database 
1 GB/day 

data streams have always been there ! 
(state-of-the-art, circa 2000) 
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data streams, why bother ? 

data warehouse 
10 – 100 TB 
(more data,  

for longer time periods) 

aggregate 
computation 

service 
platform 

production 
database 

10 GB / day 

it's growing ? 
so what ? 

(state-of-the-art, circa 2010) 

business 
oriented 

data mart 
10 GB 
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data streams, why bother ? 

  moore's law (cpu) and kryder's law (storage) have roughly 
the same exponent  

–  performance for unit cost doubles every 18 months 
  so, indeed why bother ? 

  blindingly obvious :  

–  most exact data processing operations scale worse than O(n), 
often very much worse, as O(n²) 

–  even sort scales in O(nlog(n)) 

  petabytes irresistibly crawl their way to defeat teraflops ! 
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data streams, why bother ? 

data warehouse 
10 – 100 TB 
(more data,  

for longer time periods) 

aggregate 
computation 

service 
platform 

production 
database 

10 GB / day 

"gigantic"  
data warehouses  

become a  
computational 
blocking point 

business 
oriented 

data mart 
10 GB 
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data streams, why bother ?  
     this is why ! 

data warehouse 
10 – 100 TB 
(more data,  

for longer time periods) 

off-line 
exact 

aggregate 
computation 

service 
platform 

production 
database 

10 GB / day 

business 
oriented 

data mart 
10 GB 

on-line 
approximate 
aggregate 

computation 
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... but small data also matters ! 
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(almost) brainless chatters ... 

  ... otherwise known as " (remote) sensors" 

  potentially thousands of them in an ad hoc communication 
network, millions to come ("digital dust") 

  very limited power autonomy : communication and 
processing drastically reduce the lifetime of the sensors 

  processing data at the stream level is a way to reduce the 
cost of communication and processing 

–  for instance, compute the mean of a measurement as data are 
sent to a base station through the ad hoc network instead of 
transmitting raw data to the base station 
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plan 

  flux de données vs bases de données 

  résumé vs "stream-mining" 

  quelques résumés simples 

  résumé de la jointure de deux flux de données 
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data stream vs data base 

data base 
mining 

management 

processing 
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data stream vs data base 
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(cf Cormode) 
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data stream vs data base 
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"generic summary" vs "stream-mining" 

  stream-mining 

–  persistant queries valid for all the stream duration 
–  the result of the query is a new data stream (in general) 

–  if the application allows the pre-definition of all useful queries, 
this formalism answer all the applicative requirements 

  what about a new query on past data ? 

–  data are volatile and cannot be accessed anymore 
–  no pre-defined query has been set, so no answer can be 

retrieved 
–  a generic summary aims at allowing the (approximate) 

execution of such queries (with confidence bounds on the 
result) 
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"generic summary" vs "stream-mining" 

  and what about a persistent query on two sliding windows 

–  one on the immediate history 
–  one on the distant past 

–  warning … persistent query on past data … 

"present 
window" 

"past 
window" 

what is the present average invoice 
 of the 10% best clients at the same period last year ? 



unrestricted  ENS RENNES 22 Septembre 2009 

generic summary and density estimation 

  a data-stream is a distribution on TxD 

–  T description space for time 
–  D description space of events 

–  typically, (@, Value) 

  a generic summary can be seen as a density estimation 
problem on TxD  

–  under memory, cpu, bw constraints 
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generic summary and density estimation 

  "ad hoc" approaches, however, with separate treatments of 
time and events 

  CluStream (Aggarwal) 

–  mixture of gaussians for the density estimation of event space 
–  limited to numerical description of events 

–  logarithmic "cliches" structure for time 
  HClustream (Yang) or SCLOPE (Ong):  

–  claim to extend Clustream to symbolic data by keeping the 
frequencies of the modalities per gaussian 

–  clearly do not scale for large address space (for instance) 
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generic summary and sampling 

  downgrade density estimation to sampling 

–  generic summary ～ keep a representative sample of the 
stream events 

  constraints 

–  limited memory : bound on the summary size 
–  limited cpu : bound on the per event processing 
–  distributed processing 

–  limited bw : bound on the communication requirements 
–  limited cpu : bound on the computational cost to get the 

global summary from the local summaries 
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some simple summaries 

  uniform sampling of a stream 

  weighted sampling of a stream 

  uniform sampling from a sliding window on a stream 

  weighted sampling from a sliding window on a stream 
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(over-)simplified steam model 

  infinite sequence of events e 

–  e.time is an integer 
–  e.data is a description of the event 

  perfect observation 

  perfect time-ordering 
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uniform sampling of a stream 

  at any time, the probability for an event to be in the sample is 
uniform with respect to the complete history of the stream 

  sample size r 

–  at time t, the probability for event e  (with e.time ≦ t) to be in 
the sample is r/t 

  time evolution of the sample : res(t) 

–  condition for a new event to be sampled ? 
–  condition for an event in the sample to be excluded ? 
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reservoir sampling 
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reservoir sampling 
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reservoir sampling 

res(t) 

t t+1 

e 

Pin ? 

Pout ? 

Pin = r/(t+1) 
for all events in the reservoir: 
at time t: P(e, t) = r/t pour e.time < t+1 
at time t+1, P(e, t+1) = r/(t+1) and 
P(e, t+1) = P(e, t)*[(1-Pin) + Pin*(1-Pout(e))] 

Pout = 1/r 
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reservoir sampling (Vitter) 

  for t < r+1, place all events into the reservoir 

  for t > r 

–  place a new event in the reservoir with probability r/t 
–  if a new event is sampled, exclude one event from the 

reservoir randomly 
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reservoir sampling 
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Pout = 1/r 
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reservoir sampling 
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t t+1 

e Pin = r/(t+1) 

Pout = 1/r 
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reservoir sampling 

t t+1 

Pin = r/(t+2) 

Pout = 1/r 

res(t+1) 

t+2 

e 
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what about the constraints ? 

  limited memory : size of the reservoir set a priori 

  limited cpu :  

–  naive implementation : one random draw per event plus 
another in case of success  

–  in fact, only one random draw is enough ... 
–  ... and much less : after an insertion, draw the time of the next 

insertion 
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what about the constraints ? 

  distributable: summary of a set of streams φi 

–  local summaries of the same size  

–  res (MUXi φi , t) = Ui res (φi , t) 
–  the summary of the multiplex is just the union of the 

summaries of the original streams, 

–  either transmit the local summaries to a collector when 
required 

–  or transmit the local updates to a collector 
–  limited bw to the collector 
–  no communication between streams 
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weighted sampling of a stream 

  a weight is associated to all events, e.weight 

  at any time t, the probability of a past event … 

–  e.time < t+1  
  … to be in the sample is its relative weight with respect to the 

total weight of the past 

–  Prob(e in res(t)) = e.weight / Σf.time<t+1f.weight 

  time evolution of the sample : res(t) 

–  condition for a new event to be sampled ? 
–  condition for an event in the sample to be excluded ? 
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weighted reservoir sampling 

res(t) 

t t+1 

e 

Pin = r * e.weight / Σ f. weight 

Pout = 1/r 

W(t) =       Σ       f. weight 
f.time < t+1 

W(t+1) = W(t) + e. weight 
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weighted reservoir sampling 

res(t) 

t t+1 

e 

Pin = r * e. weight / Σ f. weight 

Pout = 1/r 

W(t) =       Σ       f. weight 
f.time < t+1 

W(t+1) = W(t) + e. weight 

interpretation: 
"1 event with weight 10  

is equivalent to 
10 identical events with weight 1 

arriving at the same time" 
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what about the constraints ? 

  limited memory : size of the reservoir set a priori 

  limited cpu :  

–  naive implementation : one random draw per event plus 
another in case of success  

–  in fact, only one random draw is enough ... 
–  ... but cannot do less : future weights are unknown so you 

cannot draw the next insertion time  
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quid de nos contraintes ? 

  distributable: summary of a set of streams φi 

–  local summaries of the same size  

–  the summary of the multiplex is the union of resampled 
summaries of the original streams according to the respective 
weights of the streams 

–  n local reservoirs of size r will produce a global reservoir 
of size less than n*r 

–  the size of the sample is bounded but unknown in 
advance 

–  either transmit the local summaries to a collector when 
required 

–  or transmit the local updates to a collector 
–  limited bw to the collector 
–  no communication between streams 
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uniform sampling from a sliding window on a stream 

  at any time t, the probability for an event of [t-τ, t] to be in the 
sample is uniform on [t-τ, t] 

–  zero probability for events in [0, t-τ-1] 

  sample size r ( < τ ) 

  time evolution of the sample : res(t) 

–  condition for a new event to be sampled ? 
–  condition for an event in the sample to be excluded ? 
–  how to deal with "expiring" events of the sample ? 

–  at time t, e in res(t-1) and e.time = t-τ -1 "expires" 
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why reservoir sampling doesn’t work with sliding windows 

  suppose an element in the reservoir expires 

  need to replace it with a randomly-chosen element from the 
current window 

  however, in the data stream model we have no access to 
past data 

–  so we cannot sample from the "current" window, it's gone ! 

  we could store the entire window but this would require O(τ) 
memory  
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chain-sample (Babcock) 

  initialisation: reservoir sampling on the first window 
–  include each new element in the sample with probability 1/

min(t,τ) 
–  as each element is added to the sample, choose the index of 

the element that will replace it when it expires 
–  when the t-th element expires, the window will be (t+1…t+τ), 

so choose the index from this range 
  once the element with that index arrives, store it and choose 

the index that will replace it in turn, building a “chain” of 
potential replacements 

  when an element is chosen to be discarded from the sample, 
discard its “chain” as well 
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example: r = 1 et τ = 10 

3 5 1 4 6 2 8 5 2 3 5 4 2 2 5 0 9 8 4 6 7 3 

3 5 1 4 6 2 8 5 2 3 5 4 2 2 5 0 9 8 4 6 7 3 

3 5 1 4 6 2 8 5 2 3 5 4 2 2 5 0 9 8 4 6 7 3 

3 5 1 4 6 2 8 5 2 3 5 4 2 2 5 0 9 8 4 6 7 3 

3 enters the sample : choose the position of its successor (will be 9) 

9 enters the window : choose the position of its successor (will be 7) 

3 expires : include its successor, 9, in the sample 
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what about the constraints ? 

  limited memory :  

–  size of the reservoir set a priori … 
–  … and the number of pointers to successors can be bounded 

– mean length of a chain = e = 2.718 

   limited cpu :  

–  e = 2.718 random draws per event on average 



unrestricted  ENS RENNES 22 Septembre 2009 

what about the constraints ? 

  distributable: summary of a set of streams φi 

–  local summaries of the same size  

–  res (MUXi φi , t) = Ui res (φi , t) 
–  the summary of the multiplex is just the union of the 

summaries of the original streams, 

–  either transmit the local summaries to a collector when 
required 

–  or transmit the local updates to a collector 
–  limited bw to the collector 
–  no communication between streams 
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uniform sampling from a sliding window on a stream 

  a weight is associated to each event e : e.weight 

  at any time t, the probability for an event of [t-τ, t] to be in the 
sample is its relative weight with respect to the total weight on [t-τ, t] 

–  zero probability for events in [0, t-τ-1] 
–  Prob(e in res(t)) = e.weight / Σ t-τ-1<f.time<t+1f.weight 

  sample size r ( < τ ) 

  time evolution of the sample : res(t) 
–  condition for a new event to be sampled ? 
–  condition for an event in the sample to be excluded ? 
–  how to deal with "expiring" events of the sample ? 

–  at time t, e in res(t-1) and e.time = t-τ -1 "expires" 
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weighted chain sampling 

  open problem ... 

–  we do not know the future weights, so we cannot choose the 
position of the successors 
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another simple approach:  oversample and select 

 uniform random sample from a sliding window 

1.  as each element arrives remember it with probability  
p = c r/τ log τ; otherwise discard it 

2.  discard elements when they expire 

3.  when asked to produce a sample, choose r elements at random from the 
set in memory 

  expected memory usage of O(r log τ) 

  uses O(r log τ) memory whp 

  the algorithm can fail if less than r elements from a window are 
remembered; however whp this will not happen 

 adaptation to the weigthed case is obvious:  

 weighted random sampling in step 1 (if weights are known in advance) or in 
step 3 (otherwise: for instance, application-dependent weights) 
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