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Background.
General issues about interpolation

Interpolation is a general and classical tool for approximation
Assume you are given a set ϕ1, . . . , ϕn, . . . of linearly independent
functions, given a function f that you want to approximate, the problem
is

find a familly of scalars {αn
M}1≤n≤M such that

f (ζm
M) =

∑M
n=1 αn

Mϕn(ζm
M)

where the interpolation points ζm
M are suitably chosen

of course, the project is generally not limited to the approximation in
the only

XM = Span{ϕn, 1 ≤ n ≤ M}
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Background.
General issues about interpolation

Among the classical questions raised by interpolation

given a set of points, does the interpolant at these points exist;
is the interpolant unique;
how does the interpolation process compares with other
approximations (in particular orthogonal projections);
is there an optimal selection for the interpolation points;
is there a constructive optimal selection for the interpolation
points;

These question are covered in the polynomial case, though not
completely and the answers are complex and rather recent

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 5 / 63



Background.
General issues about interpolation

Among the classical questions raised by interpolation

given a set of points, does the interpolant at these points exist;
is the interpolant unique;
how does the interpolation process compares with other
approximations (in particular orthogonal projections);
is there an optimal selection for the interpolation points;
is there a constructive optimal selection for the interpolation
points;

These question are covered in the polynomial case, though not
completely and the answers are complex and rather recent

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 5 / 63



Background.
General issues about interpolation

Among the classical questions raised by interpolation

given a set of points, does the interpolant at these points exist;
is the interpolant unique;
how does the interpolation process compares with other
approximations (in particular orthogonal projections);
is there an optimal selection for the interpolation points;
is there a constructive optimal selection for the interpolation
points;

These question are covered in the polynomial case, though not
completely and the answers are complex and rather recent

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 5 / 63



Background.
General issues about interpolation

Among the classical questions raised by interpolation

given a set of points, does the interpolant at these points exist;
is the interpolant unique;
how does the interpolation process compares with other
approximations (in particular orthogonal projections);
is there an optimal selection for the interpolation points;
is there a constructive optimal selection for the interpolation
points;

These question are covered in the polynomial case, though not
completely and the answers are complex and rather recent

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 5 / 63



Background.
General issues about interpolation

Among the classical questions raised by interpolation

given a set of points, does the interpolant at these points exist;
is the interpolant unique;
how does the interpolation process compares with other
approximations (in particular orthogonal projections);
is there an optimal selection for the interpolation points;
is there a constructive optimal selection for the interpolation
points;

These question are covered in the polynomial case, though not
completely and the answers are complex and rather recent

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 5 / 63



Background.
General issues about interpolation

Among the classical questions raised by interpolation

given a set of points, does the interpolant at these points exist;
is the interpolant unique;
how does the interpolation process compares with other
approximations (in particular orthogonal projections);
is there an optimal selection for the interpolation points;
is there a constructive optimal selection for the interpolation
points;

These question are covered in the polynomial case, though not
completely and the answers are complex and rather recent

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 5 / 63



Background.
General issues about interpolation

Among the classical questions raised by interpolation

given a set of points, does the interpolant at these points exist;
is the interpolant unique;
how does the interpolation process compares with other
approximations (in particular orthogonal projections);
is there an optimal selection for the interpolation points;
is there a constructive optimal selection for the interpolation
points;

These question are covered in the polynomial case, though not
completely and the answers are complex and rather recent

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 5 / 63



Background.
General issues about interpolation

Among the classical questions raised by interpolation

given a set of points, does the interpolant at these points exist;
is the interpolant unique;
how does the interpolation process compares with other
approximations (in particular orthogonal projections);
is there an optimal selection for the interpolation points;
is there a constructive optimal selection for the interpolation
points;

These question are covered in the polynomial case, though not
completely and the answers are complex and rather recent

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 5 / 63



Outline

1 Motivation
Background
Approximation in a space of small n-width

2 Definition of the empirical interpolation procedure
The magic points
Application to polynomial interpolation

3 Reduced Basis Method
Framework of the approach
Parameter dependent problems
An example

4 From the idea to the implementation
Black-Box implementation
Error Estimates
Selection of the parameters of the reduced basis

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 6 / 63



Approximation in a space of small n-width.
Definition of n-width

Definition
Let X be a normed linear space, X be a subset of X and Xn be a
generic n-dimensional subspace of X . The deviation of X from Xn is

E(X ; Xn) = sup
x∈X

inf
y∈Xn

‖x − y‖X .

The Kolmogorov n-width of X in X is given by

dn(X ,X ) = inf{E(X ; Xn) : Xn an n-dimensional subspace of X}
= inf

Xn
sup
x∈X

inf
y∈Xn

‖x − y‖X . (1)

The n-width of X thus measures the extent to which X may be
approximated by a n-dimensional subspace of X .
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Approximation in a space of small n-width.
Interpolation

We are looking for a constructive way of approximating in X , we
assume that X ⊂ C0

We propose a greedy approach both for constructing the interpolation
points and the discrete spaces XM ,

our method is hierarchical
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Approximation in a space of small n-width.
definition of the magic points

The first interpolating function is

ϕ1 = arg max
Φ∈S1[X ]

‖Φ‖L∞(Ω)

The first interpolation point is

ζ1 = arg max
x∈Ω

|ϕ1|

and we set q1 = ϕ1(·)/ϕ1(ζ1) The second interpolating function is

ϕ2 = arg max
Φ∈S1[X ]

‖Φ(·)− Φ(ζ1)q1‖L∞(Ω)

The second interpolation point is

ζ2 = arg max
x∈Ω

|ϕ2(·)− ϕ2(ζ1)q1|

and we set q2 = ϕ2(·)− ϕ2(ζ1)q1/ϕ2(ζ2)− ϕ2(ζ1)q1(ζ2) and we
proceed by induction
Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 10 / 63
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Approximation in a space of small n-width.
The recursion formula

We thus construct, by induction, the nested sets of basis functions
{q1, . . . ,qM} and the nested sets of interpolation points
TM = {ζ1, . . . , ζM},1 ≤ M ≤ Mmax,.
For M = 3, . . . ,Mmax, we first solve the interpolation problem for
αM−1

j (Φ),1 ≤ j ≤ M − 1, from

M−1∑
j=1

qj(ζi)α
M−1
j (Φ) = Φ(ζi), i = 1, . . . ,M − 1 , (2)

and compute

IM−1[Φ] =
M−1∑
j=1

αM−1
j (Φ)qj , (3)

and
εM−1(Φ) = ‖Φ(·)− IM−1[Φ(·)]‖L∞(Ω) , (4)

for all Φ ∈ X ;
Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 11 / 63
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Approximation in a space of small n-width.
The recursion formula

We then define
ϕM = arg max

Φ∈S1[X ]
εM−1(Φ) , (5)

and
ζM = arg max

x∈Ω
‖ϕM(x)− IM−1[ϕM(x)])‖L∞(Ω) , (6)

we finally set qM(x) =
ϕM−IM−1[ϕM ]

ϕM(ζM)−IM−1[ϕM ](ζM) and

BM
ij = qj(xi),1 ≤ i , j ≤ M.

The procedure is well posed if X is of sufficently large dimension (for
M ≤ Mmax ≤ dimX ).

Note that the matrix BM is invertible and lower triangular (the diagonal
is Id).
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is Id).
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Approximation in a space of small n-width.
The Lebesgue constant

The error analysis of the interpolation procedure classically involves
the Lebesgue constant ΛM = supx∈Ω

∑M
i=1 |hM

i (x)|, where the hM
i is the

associated Lagrange basis.
A (in practice very pessimistic) upper-bound for the Lebesgue constant
is 2M − 1.
We remind also that the Lebesgue constant enters into the bound for
the interpolation error as follows

Lemma
For any u ∈ X, the interpolation error satisfies

‖Φ− IMΦ‖L∞(Ω) ≤ (1 + ΛM) inf
ψM∈span{ϕi ,1≤i≤M}

‖Φ− ψM‖L∞(Ω). (7)
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Approximation in a space of small n-width.
The Approximation of the greedy algorithm

We can also prove that

Theorem

Assume that there exists a sequence of finite dimensional spaces

X1 ⊂ X2 ⊂ · · · ⊂ XM ⊂ · · · ⊂ X , dim XM = M (8)

such that there exists c > 0 and α with

∀Φ ∈ X , inf
ψM∈XM

‖Φ− ψM‖X ≤ ce−αM (9)

then, if α > log(4), there exists β > 0 such that

‖Φ− IMΦ‖L∞(Ω) ≤ ce−βM . (10)

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 14 / 63



Interpolation error..... a posteriori

For an estimator on the error, let M ≤ Mmax − 1, we define

ε̂M(Φ) ≡ |Φ(ζM+1)− IMΦ(ζM+1)|

Lemma : If Φ ∈ XM+1, then

‖Φ( ·)− IMΦ( ·)‖L∞(Ω) ≤ ε̂M(Φ)

Of course, in general Φ 6∈ XM+1
and hence our estimator ε̂M(Φ) is not a rigorous upper bound;

however, if εM(Φ) → 0 very fast,

we expect (and check) that the effectivity, ηM(Φ) ≡ ε̂M(Φ)/εM(Φ) ' 1.

Furthermore, the estimator is very inexpensive – one additional
evaluation of Φ.
Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 15 / 63
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Numerical results

We consider
Φ(x) ≡ Φ ((x1, x2); (µ1, µ2)) ≡

(
(x1 − µ1)

2 + (x2 − µ2)
2)−1/2 for

x ∈]0,1[ 2 and µ ∈ [−1,−0.01]2

M ε∗M,max ρM ΛM ηM

8 8.30 E-02 0.68 1.76 0.17
16 4.20 E-03 0.67 2.63 0.1.
24 2.68 E-04 0.49 4.42 0.28
32 5.64 E-05 0.48 5.15 0.20
40 3.66 E-06 0.54 4.98 0.60
48 6.08 E-07 0.37 7.43 0.29

ε∗M,max is the best fit error, ρM is the averaged ratio
ε

ε∗(1 + Λ)
, ΛM is the

“Lebesgue” constant and ηM is the averaged effectivity index
ε̂

ε
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Note that we have here approximated the full set of Φ ((x);µ) with a

few of them Φ ((x); (µ)) '
M∑

i=1

αiΦ
(
(x);µi

)
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Numerical results
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Figure: (a) Parameter sample set Sg
M , Mmax = 51, and (b) interpolation points

xm, 1 ≤ m ≤ Mmax.
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Application to polynomial interpolation
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Application to polynomial interpolation
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Figure: Lebesgue constant on the the triangle.
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Application to polynomial interpolation
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Application to polynomial interpolation
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Application to polynomial interpolation
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Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 24 / 63



Application to polynomial interpolation

Figure: Lebesgue constant on the the tetrahedron.
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Application to polynomial interpolation

Figure: Magic points.
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Application to polynomial interpolation

n M |ϕ1d(xM+1)− IM [ϕ1d(xM+1)]| ‖ϕ1d − IMϕ1d‖L∞ ηM
2 3 7.27 E – 2 7.79 E – 2 1.07
4 5 7.47 E – 3 7.52 E – 3 1.01
6 7 6.18 E – 4 6.70 E – 4 1.08
8 9 3.84 E – 5 3.84 E – 5 1.00
10 11 1.69 E – 6 1.72 E – 6 1.02
12 13 3.08 E – 8 4.02 E – 8 1.30
14 15 1.65 E – 9 1.65 E – 9 1.00
16 17 6.33 E – 11 6.73 E – 11 1.06
18 19 1.39 E – 12 1.39 E – 12 1.00
20 21 2.50 E – 14 2.51 E – 14 1.00

Table: Comparison between the error estimate and the actual error, for
polynomial interpolation of ϕ1d = e−x2

.

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 27 / 63



Application to polynomial interpolation

n M |ϕ2d(xM+1)− IM [ϕ2d(xM+1)]| ‖ϕ2d − IMϕ2d‖L∞ ηM
2 9 1.13 E – 1 6.32 E – 1 5.59
4 25 1.43 E – 1 1.66 E – 1 1.16
6 49 2.03 E – 2 2.24 E – 2 1.10
8 81 7.23 E – 4 1.46 E – 3 2.02

10 121 5.36 E – 5 1.06 E – 4 1.98
12 169 2.76 E – 6 2.78 E – 6 1.01
14 225 1.04 E – 8 1.31 E – 7 12.60
16 289 2.67 E – 9 4.88 E – 9 1.83
18 361 4.98 E – 11 1.16 E – 10 2.33
20 441 2.57 E – 12 2.78 E – 12 1.08

Table: Comparison between the error estimate and the actual error, for
polynomial interpolation of ϕ2d = e−(x2+y2).
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Application to polynomial interpolation

n M |ϕirr(xM+1)− IM [ϕirr(xM+1)]| ‖ϕirr − IMϕirr‖L∞ ηM
2 9 7.95 E – 2 1.59 E – 1 2.00
4 25 3.88 E – 2 1.47 E – 1 3.79
6 49 2.44 E – 3 1.95 E – 2 8.00
8 81 4.26 E – 3 2.42 E – 2 5.68

10 121 1.37 E – 3 3.74 E – 3 2.73
12 169 3.75 E – 3 5.66 E – 3 1.51
14 225 2.96 E – 4 5.69 E – 4 1.92
16 289 5.01 E – 5 5.80 E – 4 11.58
18 361 1.29 E – 4 3.00 E – 4 2.33
20 441 3.09 E – 4 5.72 E – 4 1.85

Table: Comparison between the error estimate and the actual error, for
polynomial interpolation of ϕirr = |x3y3|.
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Reduced Basis Method : Framework of the approach.
Basics on approximation

A lot of problems we have to face in numerical analysis and
scientific computing: find u such that

F(u) = 0 (1)

can actually be written under a variational form : find u ∈ X such
that

A(u, v) =< f , v >, ∀v ∈ X̃ (2)

Where X and X̃ are some coherent Banach spaces, A is an
appropriate continuous form, linear in v , and f is a given linear
form.
For time dependent problem one may specify even : find
u,∀t ,u(t , ; ) ∈ X such that

m(
∂u
∂t
, v) +A(u, v) =< f , v >, ∀v ∈ X̃ (2′)
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Reduced Basis Method : Framework of the approach.
Basics on approximation

The coherence in X and X̃ is expressed through a condition in terms
of A that, for linear problems, involves, e.g.

the ellipticity or coercivity (Lax Milgram theorem when X = X̃ ) or
the Babuška-Brezzi condition.....

that makes explicit conditions under which the problem is well posed :
i.e. there exists a unique solution u to problem (1).

For nonlinear problems the conditions are various and more involved.
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Reduced Basis Method : Framework of the approach.
Basics on approximation

The approximation can now proceed. Two families of finite dimensional
spaces {Xn}n and {X̃n}n are provided, that maintain the above
mentioned coherence.
and the discrete space reads : find un ∈ Xn such that

An(un, vn) =< f n, vn >, ∀vn ∈ X̃n (2n)

or again for time dependent problems : find un,∀t ,un(t , ; ) ∈ Xn such
that

mn(
∂un

∂t
, vn) +An(un, vn) =< f n, vn >, ∀vn ∈ X̃n (2′n)

most often further numerical quadratures are involved leading to
slightly modified discrete problems
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or again for time dependent problems : find un,∀t ,un(t , ; ) ∈ Xn such
that

mn(
∂un

∂t
, vn) +An(un, vn) =< f n, vn >, ∀vn ∈ X̃n (2′n)

most often further numerical quadratures are involved leading to
slightly modified discrete problems
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Reduced Basis Method : Framework of the approach.
Basics on approximation

All the art of the numerical analyst or the specialist of scientific
computing tends to define the discrete spaces Xn and X̃n ... and also
An.... in such a way that

The discrete solutions un exist and are unique
An error bound ‖u − uN‖X ≤ c infwn∈Xn ‖u − wN‖X can be derived
The best fit, infwn∈Xn ‖u − wN‖X , goes to zero rapidly
The effective computation of un is easy enough
An a posteriori error providing the size of ‖u − uN‖X is available
An a posteriori indicator telling what to do to improve ‖u − uN‖X is
available
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Reduced Basis Method : Framework of the approach.
What most approaches do

Most approaches tend to define a family of spaces Xn either by
proposing

multipurpose approximations providing good accuracy assuming
some regularity holds this is the case of finite differences, finite
element, finite volume, spectral... methods

then error in lower order spaces (Aubin’s trick)
nonlinear approximations based on a posteriori indicators that
allows refinements or based on multiresolution analysis
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Reduced Basis Method : Framework of the approach.
What reduced basis method propose

Here what we want to use is an a priori knowledge of a reduced space
X much smaller than X where the solution to (1) should be sought
We present here two classes of problems where this strategy can be
used

parameter dependent problems
hierarchical geometry for the domain

in both cases the space X is conceived from the use of a more
standard approximation methods you do not have to forget your
favorite method... it is more the opposite in a first step
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1 Motivation
Background
Approximation in a space of small n-width

2 Definition of the empirical interpolation procedure
The magic points
Application to polynomial interpolation

3 Reduced Basis Method
Framework of the approach
Parameter dependent problems
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4 From the idea to the implementation
Black-Box implementation
Error Estimates
Selection of the parameters of the reduced basis
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Parameter dependent problems.
Basics

Let us consider a class of problems depending on some parameters:

F(u, µ) = 0 (1′)

and the parameter µ belongs to IRd (or some brick in IRd )
This is the case for instance in a dimensional problem where
some parameters have to be optimized for some purpose
This can equally be the case for an inverse problem in parameter
identification.
The solution u = u(µ) of (1’) is sought in some space X for any
given parameter µ
The dependancy in µ of the solution u(µ) is most often regular.
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Parameter dependent problems.
The reduced basis space and approximation

Define X = Span{u(µ), µ ∈ D} then looking for the solution in X
instead of X (generally a Sobolev space) is already a valuable
indication.....
In order to apprehend in which sense the good behavior of X
should be understood, it is helpfull to introduce the notion of
n-width following Kolmogorov

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 39 / 63



Parameter dependent problems.
The reduced basis space and approximation

Define X = Span{u(µ), µ ∈ D} then looking for the solution in X
instead of X (generally a Sobolev space) is already a valuable
indication.....
In order to apprehend in which sense the good behavior of X
should be understood, it is helpfull to introduce the notion of
n-width following Kolmogorov

Y. Maday ( UPMC, Labo J.-L. Lions) Algorithmes gloutons 10 nov. 2008 39 / 63



Parameter dependent problems.
The reduced basis space and approximation

Definition
Let X be a normed linear space, X be a subset of X and Xn be a
generic n-dimensional subspace of X . The deviation of X from Xn is

E(X ; Xn) = sup
x∈X

inf
y∈Xn

‖x − y‖X .

The Kolmogorov n-width of X in X is given by

dn(X ,X ) = inf{E(X ; Xn) : Xn an n-dimensional subspace of X}
= inf

Xn
sup
x∈X

inf
y∈Xn

‖x − y‖X . (11)

The n-width of X thus measures the extent to which X may be
approximated by a n-dimensional subspace of X .
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Parameter dependent problems.
The reduced basis space and approximation

Evaluation of the n-width of the set of solutions.

PCA in appropriate norms
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Parameter dependent problems.
The reduced basis space and approximation

Of course X is rarely known but Xn = Span{u(µk ), k = 1, ...,n}
where µk are properly chosen
The solution to (1’) for other values of µ is then approximated
through a Galerkin process.
The best fit approximation is often exponential in n and a random
log repartition of the sample values µk is often better than other
obvious choices.

Almroth B.O., Stern P., Brogan F.A.(1978)
Noor A.K., Peters J.M.(1980)

Galerkin approximation is preferable to any kind of interpolation or
extrapolation method.
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An example

Thermal fin problem

a(u, v ;µ) :=

∫
Ω

k∇u∇v + Bi
∫
∂Ω\Γ1

uv =

∫
Γ1

v

The parameters are :
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An example

Figure: the fin geometry.
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An example

Thermal fin problem

a(u, v ;µ) :=

∫
Ω

k∇u∇v + Bi
∫
∂Ω\Γ1

uv =

∫
Γ1

v

The parameters are :

the conductivities ki , i = 1, ..,4
the dimensions L and t
the Biot number Bi
The design space is D = [0.1,10]4 × [0.01,1]× [2,3]× [0.1,0.5]
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the dimensions L and t
the Biot number Bi
The design space is D = [0.1,10]4 × [0.01,1]× [2,3]× [0.1,0.5]
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An example
... and its approximation

We choose randomly N points in the design space D
and compute the solutions for these points by a finite element method
(say).
The reduced basis method is then implemented, from these solutions,
and the error on the averaged temperature at the foot of the fin is

N 10 20 30 40 50
Error 1.610−1 1.610−2 2.410−3 7.210−4 3.110−4

Note that even for N = 50 there are less than 2 points per parameter
direction, exponential convergence

N appears rather not much dependent on the number of parameters,
actually N(d) << N(1)d !!!
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Black-Box implementation

In order to solve the reduced basis problems in real time, some
preliminary computations — off line — have to be made :
• e.g. the stiffness matrix Ai,j := a(u(µi),u(µj);µ).
Note that Ω = ∪Ω` hence :

∫
Ω =

∑6
`=0

∫
Ω`

Note also that through a change of variable, each integral over the Ω`

can be written as a linear combinaison of
∫ 1
−1

∫ 1
−1

∂u
∂x

∂v
∂x and∫ 1

−1

∫ 1
−1

∂u
∂y

∂v
∂y

so that the original problem∫
Ω

k∇u∇v + Bi
∫
∂Ω\Γ1

uv =

∫
Γ1

v

can be rewritten as
P∑

p=1

gp(µ)ap(u, v) = `(v)

• where the bilinear forms ap are parameter independent
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Black-Box implementation
∑P

p=1 gp(µ)ap(u, v) = `(v)

The implementation is then simplified as

offline, the different ap(ζi , ζj) are precomputed,
the ζi := u(µi) being the reduced basis elements

online, the computation of the stiffness matrix requires only PN2

computations,
instead of N 2, where N is the dimension of the finite element

basis.

Ai,j =
P∑

p=1

gp(µ)ap(ζi , ζj)

online again the stiffness matrix is inverted in N3 operations
(direct inversion)
all the lengthy computations are thus done offline and the ones
that are done online scale with N only
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Error Estimates
outputs

Most of the time, the complete knowledge of the solution of partial
differential equation is not required.
e.g., assume you have the following problem : find u ∈ X

a(u, v ; Xµ) =< f , v >, ∀v ∈ X

What is required, generally, is outputs computed from the calculated
solution :
• then compute the following output s = s(u)
The discretization then proceeds : find uδ ∈ Xδ

a(uδ, vδ) =< f , vδ >, ∀vδ ∈ Xδ

and the approximated output is given by sδ = s(uδ)
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Error Estimates
a priori convergence

How valid is the approximated output sδ = s(uδ)
Assuming Lipschitz condition (ex. linear case) over s, it follows that

|s − sδ| ≤ c‖u − uδ‖X

Thus any information over the error in the energy norm will allow to get
verification.
Actually it is well known that the convergence of sδ towards s most
often goes faster
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Error Estimates
a priori convergence

The convergence of sδ towards s most often goes faster ctn......
Let us assume we are in the linear output case.... s(u) = `(u)
It is standard to introduce then the adjoint state, solution of the
following problem : find ψ∈ X

a(v , ψ) = −`(v), ∀v ∈ X

Remember a(u, φδ) = a(uδ, φδ) = (f , φδ)
The error in the output is then

sδ − s = `(uδ)− `(u)
= a(u, ψ)− a(uδ, ψ)
= a(u, ψ − φδ)− a(uδ, ψ − φδ), ∀φδ ∈ Xδ
= a(u − uδ, ψ − φδ), ∀φδ ∈ Xδ
≤ c‖u − uδ‖X‖ψ − φδ‖X , ∀φδ ∈ Xδ

(12)
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Error Estimates
a priori convergence

The convergence of sδ towards s most often goes faster ctn......

sδ − s ≤ c‖u − uδ‖X‖ψ − φδ‖X , ∀φδ ∈ Xδ (13)

so that the best fit of ψ in Xδ can be chosen to improve the first error
bound that was proposed for |s − sδ|.
For instance if ψδ is the solution of the Galerkin approximation to ψ, we
get

|s − sδ| ≤ c‖u − uδ‖X‖ψ − ψδ‖X

But this is just a priori business .........
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The basic error reconstruction

In order to get a posteriori information, between `(uh) and `(uδ), we
have to get a hand on the residuals in the resolution (in Xδ) of the
primal and dual problems. We introduce for any v ∈ X ,

Rpr (v ;µ) = a(uδ, v ;µ)− < f , v >, Rdu(v ;µ) = a(v , ψδ;µ) + `(v).

Let us now compute the reconstructed errors associated to the
previous residuals. These are the solutions to the following problems

2α
∫
∇êh

pr(du)∇vh = Rpr(du)(vh;µ), ∀vh

we then have
Theorem Let s− = sδ − α

∫
∇(êh

pr + êh
pr )2 then s− ≤ sh.

sh − s− ≡ |sh − sδ|

How to transform to a do-able method ??
Black Box again
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Selection of the parameters of the reduced basis

One possibility is to use a random approach.... and hope for the best....
.... generally it works not so badly.

But a more intelligent way can be proposed....
... based on a greedy process that combines the reduced
approximation and the error evaluation.

take a first parameter (randomly)
use a (one dimensional) reduced basis approach over a set of
parameter values (chosen randomly) and select, as a second
parameter, the one for which the associated error is the largest.

this gives now a 2 dimensional reduced basis method.
use this (2 dimensional) reduced basis approach over the same
set of parameters and select, as a third parameter, the one for
which the associated error is the largest.

this gives a 3 dimensional reduced basis method...
and proceed...
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Rational in front of a new problem

When you will come back home.... does your problem fits with RB
approximations....

.... try step by step.

check that your problem is parameter dependant
compute 100 solutions with your favorite method !!!
perform a PCA and check the eigenvalue decrease
perform a Galerkin approximation
try to find good parameters through projection and perform a
Galerkin approximation
and proceed...
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Close the circle

The Black Box Approach allows real time solution procedure
Valid only for linear problem
at least as it is.
The use of magic points allows to tackle non linear problem
Real life problems are non linear... with non constant coefficients
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Nonlinear approximation for high-dimensional partial
differential equations

−∆u(x , y) = f (x , y)

with homogeneous Dirichlet boundary conditions
Solution

g = argminu∈H1
0 (Ω)

1
2

∫
|∇u|2 −

∫
fu

E(u) =
1
2

∫
|∇u|2 −

∫
fu =

1
2

∫
|∇(u − g)|2 − 1

2

∫
|∇g|2

u =
∞∑

n=1

rn(x)sn(y)

Extension to high dimension straightforward
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Nonlinear approximation for high-dimensional partial
differential equations

u =
∞∑

n=1

rn(x)sn(y)

pure greedy
orthogonal greedy
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That’s all folks

Thanks !!
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