A Model Checking Case Study Flooding Time Synchronization Protocol

Ocan Sankur

Univ Rennes, CNRS, Inria

Development cycle for general-purpose systems

- Write code
- 2 Code review, testing
- O Deploy
- Fix bugs, and provide regular updates

Development cycle for general-purpose systems

- Write code
- 2 Code review, testing
- O Deploy
- Fix bugs, and provide regular updates

Is step 4 feasible for all systems?

Development cycle for general-purpose systems

- Write code
- 2 Code review, testing
- O Deploy
- Fix bugs, and provide regular updates

Is step 4 feasible for all systems? Aerospatial:

Development cycle for general-purpose systems

- Write code
- Ode review, testing
- O Deploy
- Fix bugs, and provide regular updates

Is step 4 feasible for all systems? Health:

Development cycle for general-purpose systems

- Write code
- Ode review, testing
- O Deploy
- Fix bugs, and provide regular updates

Is step 4 feasible for all systems?

Transportation (train networks, autonomous vehicles, airplanes)

Mars Rover

- Developed in 3 years, for about 150 million dollars
- The rover landed successfully in Mars but had several total system resets
- Loss of mission time
- Engineers were able to fix the bug by an update!

Ariane 5

- An Ariane rocket launched in 1996 has exploded shortly after the launch
- Previous missions were successful
- 370 million euros

Ariane 5

- An Ariane rocket launched in 1996 has exploded shortly after the launch
- Previous missions were successful
- 370 million euros

Other famous bugs: Hardware bugs, Toyota unintended acceleration bug(?), infusion pumps, train systems

Formal Verification

Formal verification

Input: System or a model **Output:** Check whether *all* possible behaviors are correct

\sim Exhaustive testing

- Hardware industry
- Embedded systems
- Communication systems
- Transportation (Automative, aerospatial, trains)

Critical areas such as aerospatial industry require certification: A rigorous development methodology including formal verification must be followed

- Hardware industry
- Embedded systems
- Communication systems
- Transportation (Automative, aerospatial, trains)

Critical areas such as aerospatial industry require certification: A rigorous development methodology including formal verification must be followed

More and more used in non-critical software development!

The model is often a transition system: **graph of configurations Goal**: Check the specification on **all paths** in this graph

The model is often a transition system: **graph of configurations Goal**: Check the specification on **all paths** in this graph

Theoretical Definition

Given a transition system T, and specification ϕ , check whether the executions of T satisfy ϕ .

When T is an automaton, and ϕ safety condition, model checking is a simple graph traversal.

Theoretical Definition

Given a transition system T, and specification ϕ , check whether the executions of T satisfy ϕ .

When T is an automaton, and ϕ safety condition, model checking is a simple graph traversal.

However, in practice, state-space explosion due to

- Use of Boolean or discrete variables (think of a 64-bit integer variable)
- Parallel composition of components
- Time constraints, ...

Model checking is about controlling the state space explosion. Each algorithm and application must justify how this is handled. E.g.

- Choice of an efficient state-space representation
- Reduction of the state space: abstractions

• . . .

Case Study: Clock Synchronization Protocol

- **Clocks** on all electronics are not identical and sensitive to temperature
- Algorithms are used to synchronize clocks over networks

► This makes sure machines agree on a common time: collaborative platforms, social networks, wireless sensor networks

Case Study: Clock Synchronization Protocol

- **Clocks** on all electronics are not identical and sensitive to temperature
- Algorithms are used to synchronize clocks over networks

► This makes sure machines agree on a common time: collaborative platforms, social networks, wireless sensor networks

Parameterized Model Checking

Goal: Model check a given protocol on all possible network topologies

Goal: Model check a given protocol on all possible network topologies

For all number of participants, and all topologies, check all executions

Leader Election

From all possible configurations a **unique leader machine** is eventually elected

FTSP

- Maintains a unique leader, recovers in case of link/node failures
- Smoothly synchronizes the clocks over the network with the clock of the leader

We consider the leader election part of FTSP: Verify that a unique leader is eventually elected

- Nodes have unique identifiers but execute the same program
- Each node wakes up with period P and sends a message to its neighbors
- The network eventually elects the node with the least ID as the $\ensuremath{\textbf{leader}}$
- Fault tolerant: any node that hasn't heard from the leader for a while timeouts and declares itself leader

- Nodes have unique identifiers but execute the same program
- Each node wakes up with period P and sends a message to its neighbors
- The network eventually elects the node with the least ID as the leader
- Fault tolerant: any node that hasn't heard from the leader for a while timeouts and declares itself leader

- Nodes have unique identifiers but execute the same program
- Each node wakes up with period P and sends a message to its neighbors
- The network eventually elects the node with the least ID as the leader
- Fault tolerant: any node that hasn't heard from the leader for a while timeouts and declares itself leader

- Nodes have unique identifiers but execute the same program
- Each node wakes up with period P and sends a message to its neighbors
- The network eventually elects the node with the least ID as the $\ensuremath{\textbf{leader}}$
- Fault tolerant: any node that hasn't heard from the leader for a while timeouts and declares itself leader

- Nodes have unique identifiers but execute the same program
- Each node wakes up with period P and sends a message to its neighbors
- The network eventually elects the node with the least ID as the leader
- Fault tolerant: any node that hasn't heard from the leader for a while timeouts and declares itself leader

- Nodes have unique identifiers but execute the same program
- Each node wakes up with period P and sends a message to its neighbors
- The network eventually elects the node with the least ID as the leader
- Fault tolerant: any node that hasn't heard from the leader for a while timeouts and declares itself leader

- Nodes have unique identifiers but execute the same program
- Each node wakes up with period P and sends a message to its neighbors
- The network eventually elects the node with the least ID as the $\ensuremath{\textbf{leader}}$
- Fault tolerant: any node that hasn't heard from the leader for a while timeouts and declares itself leader

Message content: (leader ID ℓ , sequence number *s*)

Process ignores message if its leader is $< \ell$ or if its leader is ℓ but has already seen a message with $s' \ge s$.

Ocan Sankur

```
Simplified code
#define TIMEOUT 8
extern byte ID;
byte heartBeats;
byte myleader;
byte myseq;
chan out;
void receive (byte li, byte si) {
  if(li < myleader || (li == myleader && si > myseq)){
     myleader = li;
     myseq = si;
     heartBeats = 0;
void activated () {
  if(heartBeats >= TIMEOUT){
    myleader = ID;
    myseq = 0;
    heartBeats = 0:
  } else heartBeats++;
  o!(myleader, myseq);
  if(myleader == ID){ myseq++; }
```

Our model: Derived from the TinyOS implementation Omitted here but available in the model: sample threshold, ignore period

```
Ocan Sankur
```

Model Checking of Distributed Protocols

14 / 30

Previous Verification Results

Previous work: Model checking that a unique leader is eventually elected (Spin, FDR3, Uppaal).

• A few fixed topologies. The largest verified topology (in 1 hour):

- Perfectly synchronized clocks, no clock deviations!
- Synchronous message broadcast: when a process sends a message, all other nodes stop and listen

Kusy, Abdelwahed 2006, McInnes 2009, Tan, Zhao, Wang 2010

Previous Verification Results

Previous work: Model checking that a unique leader is eventually elected (Spin, FDR3, Uppaal).

• A few fixed topologies. The largest verified topology (in 1 hour):

- Perfectly synchronized clocks, no clock deviations!
- Synchronous message broadcast: when a process sends a message, all other nodes stop and listen

Kusy, Abdelwahed 2006, McInnes 2009, Tan, Zhao, Wang 2010

Present work

- Arbitrary network topology within given diameter K (we will go up to K = 13)
- Deviating clocks
- Synchronous or asynchronous broadcast

Overview of the Talk

- FTSP
- Previous model checking attempts
- O Abstraction Idea 1: Anonymization
- Abstraction Idea 2: Network abstraction
- Olock Deviations
- Results
- Incremental Proof and Custom Semi-Algorithm
- Obstraction Refinement

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

How the leader is propagated:

How the leader is propagated:

How the leader is propagated:

Abstracting the network:

Abstracting the network:

Pick a shortest path from the future leader to some node

Abstracting the network:

On the right, the gray node can send any message (ℓ, s) to anyone, as long as ℓ is different than the IDs of the red processes.

If the least ID is 1, we check the following property in the small model:

 \square (P1.myleader = 1 & P2.myleader = 1 & P3.myleader = 1).

This would imply that the property holds on the left for this **particular topology**

Abstracting the network:

On the right, the gray node can send any message (ℓ, s) to anyone, as long as ℓ is different than the IDs of the red processes.

If the least ID is 1, we check the following property in the small model:

 $\bigcirc \Box$ (P1.myleader = 1 & P2.myleader = 1 & P3.myleader = 1).

Generalization: We want the abstract model to be the same for all possible choices of the red paths of given length D

Ocan Sankur

On the right, the gray node can send any message (ℓ, s) to anyone, as long as ℓ is different than the IDs of the red processes.

If the least ID is 1, we check the following property in the small model:

 \square (P1.myleader = 1 & P2.myleader = 1 & P3.myleader = 1).

Problem: The verification result is valid for a given path and a given configuration of the identifiers

1. Anonymization through data abstraction

Goal: Map "unbounded" variables to finite domains Let FLEAD denote the identifier of the *future leader*. Let NONFLEAD be a symbol to represent any other id.

Node Identifiers

Map all identifier variables i.e. myleader and li to {FLEAD, NONFLEAD}.

Some expressions and assignments become non-deterministic:

 \rightarrow Expression "li < myleader" becomes:

$\texttt{li} = \texttt{NONFLEAD} \land \texttt{myleader} = \texttt{FLEAD}$:	false
li = myleader = FLEAD		<pre>false true,false}</pre>

(We also map integer variables to finite domains)

1. Anonymization through data abstraction

Goal: Map "unbounded" variables to finite domains Let FLEAD denote the identifier of the *future leader*. Let NONFLEAD be a symbol to represent any other id.

Node Identifiers

Map all identifier variables i.e. myleader and li to {FLEAD, NONFLEAD}.

Some expressions and assignments become non-deterministic:

 \rightarrow Expression "li < myleader" becomes:

J	$li = FLEAD \land myleader = NONFLEAD$ $li = NONFLEAD \land myleader = FLEAD$		
Ì	li = myleader = FLEAD	:	false
l	otherwise	:{	true,false

(We also map integer variables to finite domains)

• The abstract protocol is an over-approximation

1. Anonymization through data abstraction

Goal: Map "unbounded" variables to finite domains Let FLEAD denote the identifier of the *future leader*. Let NONFLEAD be a symbol to represent any other id.

Node Identifiers

Map all identifier variables i.e. myleader and li to {FLEAD, NONFLEAD}.

Some expressions and assignments become non-deterministic:

 \rightarrow Expression "li < myleader" becomes:

ſ	$\texttt{li} = \texttt{FLEAD} \land \texttt{myleader} = \texttt{NONFLEAD}$:	true
J	$\texttt{li} = \texttt{NONFLEAD} \land \texttt{myleader} = \texttt{FLEAD}$:	false
Ì	li = myleader = FLEAD	:	false
l	otherwise	:{	true,false

(We also map integer variables to finite domains)

- The abstract protocol is an over-approximation
- The protocol does not depend on precise identifiers but only on FLEAD
 Ocan Sankur
 Model Checking of Distributed Protocols
 18 / 30

The abstraction is identical:

• For any configuration of the identifiers

The abstraction is identical:

• For any configuration of the identifiers

The abstraction is identical:

- For any configuration of the identifiers
- For any chosen path

The abstraction is identical:

- For any configuration of the identifiers
- For any chosen path

The abstraction is identical:

- For any configuration of the identifiers
- For any chosen path in any graph

The abstraction is identical:

- For any configuration of the identifiers
- For any chosen path in any graph

Fix parameter D as the max. distance from the future leader.

Abstract model A_D over-approximates the nodes within distance of D from future leader in all networks

Then, $\mathcal{A}_D \models \phi$ means ϕ holds at all nodes at distance $\leq D$.

The abstraction is identical:

- For any configuration of the identifiers
- For any chosen path in any graph

Fix parameter D as the max. distance from the future leader.

Abstract model A_D over-approximates the nodes within distance of D from future leader in all networks

Then, $\mathcal{A}_D \models \phi$ means ϕ holds at all nodes at distance $\leq D$.

Main idea but needs several other tricks to work

Asynchrony and Clock Deviations

Distributed system: we need to define a scheduler

- Each process is activated with "identical" period ${\it P}\pm\epsilon$
- Not synchronous, not completely asynchronous neither

Asynchrony and Clock Deviations

Distributed system: we need to define a scheduler

- Each process is activated with "identical" period $P\pm\epsilon$
- Not synchronous, not completely asynchronous neither

Approximate Synchrony (Caspi 2000, Desai et al. CAV2015)

Fix parameter Δ . Let $N_i(t)$ denote the number of times process *i* has been activated at time *t*.

Scheduler: Allow all interleavings between processes so that $|N_i(t) - N_j(t)| \le \Delta$ for all i, j, t.

Asynchrony and Clock Deviations

Distributed system: we need to define a scheduler

- Each process is activated with "identical" period $P\pm\epsilon$
- Not synchronous, not completely asynchronous neither

Approximate Synchrony (Caspi 2000, Desai et al. CAV2015)

Fix parameter Δ . Let $N_i(t)$ denote the number of times process *i* has been activated at time *t*.

Scheduler: Allow all interleavings between processes so that $|N_i(t) - N_j(t)| \le \Delta$ for all i, j, t.

Given P, ϵ , Δ , there exists $N = f(P, \epsilon, \Delta)$ such that the above scheduler over-approximates system behaviors given by deviating clocks.

Summary of Abstractions and Specification

- Unbounded variables and identifier variables
 - \rightarrow Nodes <code>NONFLEAD</code> become anonymous
- Shortest-Path Abstraction:

- Opproximately Synchronous Scheduler $\Delta = 1, P \in [29.7, 30.3] \text{ for } N = 110 \text{ steps}$
- Specification: Given D, find N such that

$$\mathcal{A}_{D}\models \mathsf{F}_{\leq N}\mathsf{G}(\bigwedge_{i=1}^{D} \texttt{Pi.myleader}=\texttt{FLEAD})$$

Experimental Results for FTSP

Tool: A custom algorithm implemented within **NuSMV** https://github.com/osankur/nusmv/tree/ftsp

(Other tools we tried: Spin, CMurphi, ITS-tools)

	sync	hronous	asynchronous		
D	N	time	N	time	
1	8	0s	8	0s	
2	14	1s	14	1s	
3	23	1s	25	28s	
4	35	3s	39	130s	
5	54	16s	63	65mins	
6	67	76s	TO	TO	
7	107	13mins	TO	TO	

D: Max distance from FLEAD

N: Number of steps to convergence

E.g. 2D grids with 169 nodes, or 3D grids in 2197 nodes.

- Clock rates within 1 ± 10^{-2} (period [29.7, 30.3]).

Error recovery Our models are initialized at arbitrary states: in case of any failure, the protocol recovers in N steps

Next: Incremental verification technique + a custom algorithm

Observation

The abstraction \mathcal{A}_D proves the property for all nodes within D of the future leader in all network topologies.

Observation

The abstraction A_D proves the property for all nodes within D of the future leader in all network topologies.

D-radius: the nodes within a distance of D from the future leader.

Incremental Verification For Increasing D

For all D = 1...,

- Initialize the system \mathcal{A}_D nondeterministically at states where the (D-1)-radius already satisfies $\wedge_{i \leq D-1}$ Pi.myleader = FLEAD.
- Model check $\mathcal{A}_D \models \mathsf{F}_{\leq N_D}\mathsf{G}(\mathtt{PD}.\mathtt{myleader} = \mathtt{FLEAD}).$

FL

NFL NFL

Observation

The abstraction A_D proves the property for all nodes within D of the future leader in all network topologies.

D-radius: the nodes within a distance of D from the future leader.

Incremental Verification For Increasing D

For all D = 1...,

- Initialize the system \mathcal{A}_D nondeterministically at states where the (D-1)-radius already satisfies $\wedge_{i \leq D-1}$ Pi.myleader = FLEAD.
- Model check $\mathcal{A}_D \models \mathsf{F}_{\leq N_D}\mathsf{G}(\texttt{PD.myleader} = \texttt{FLEAD}).$

Substantial gain in time and memory: processes $1, \ldots, D-1$ are simplified since they were proven to satisfy the spec forever

FL

NFL NFL

Observation

The abstraction \mathcal{A}_D proves the property for all nodes within D of the future leader in all network topologies.

D-radius: the nodes within a distance of D from the future leader.

Incremental Verification For Increasing D

For all D = 1...,

- Initialize the system \mathcal{A}_D nondeterministically at states where the (D-1)-radius already satisfies $\wedge_{i \leq D-1}$ Pi.myleader = FLEAD.
- Model check $\mathcal{A}_D \models \mathsf{F}_{\leq N_D}\mathsf{G}(\mathtt{PD}.\mathtt{myleader} = \mathtt{FLEAD}).$

Then in $N = N_1 + N_2 + \ldots + N_D$ number of steps, the whole *D*-radius agree on FLEAD

FL

NFL NFL

Optimization: Semi-Algorithm for $F_{\leq N}G\phi$

Standard algorithm to check ${\tt FG}\phi$

Convert formula to Buchi automaton, forward exploration, keep all seen states to guarantee termination.

- $-R_1, R_2, \ldots, R_k$ where R_i are states reachable in *i* steps
- Stop when $R_k \subseteq \bigcup_i R_i$, or when an accepting lasso is found

Optimization: Semi-Algorithm for $F_{\leq N}G\phi$

Standard algorithm to check ${\tt FG}\phi$

Convert formula to Buchi automaton, forward exploration, keep all seen states to guarantee termination.

- $-R_1, R_2, \ldots, R_k$ where R_i are states reachable in *i* steps
- Stop when $R_k \subseteq \cup_i R_i$, or when an accepting lasso is found
- Even the lasso starts after 1000 steps, we keep R_1, \ldots, R_{1000} .
- Consumes memory and impairs BDD reordering
- To compute best N, need to run the tool log(N) times

Optimization: Semi-Algorithm for $F_{\leq N}G\phi$

Standard algorithm to check ${\tt FG}\phi$

Convert formula to Buchi automaton, forward exploration, keep all seen states to guarantee termination.

- $-R_1, R_2, \ldots, R_k$ where R_i are states reachable in *i* steps
- Stop when $R_k \subseteq \cup_i R_i$, or when an accepting lasso is found
- Even the lasso starts after 1000 steps, we keep R_1, \ldots, R_{1000} .
- Consumes memory and impairs BDD reordering
- To compute best N, need to run the tool log(N) times

Custom Semi-Algorithm

- Start exploring but forget previous states: R_i (delete R_1, \ldots, R_{i-1})
- Whenever $R_i \subseteq \phi$, start remembering $R_i, R_{i+1}, \ldots, R_j$
 - If $R_j \subseteq \bigcup_{i \leq k \leq j} R_k$, RETURN *i*
 - If $R_j \not\subseteq \phi$, delete R_i, \ldots, R_{j-1} , and continue

Significant performance improvement

Non-Interference Lemma for FTSP

FL NFL NFL

Counterexample to $FG\phi$

- $-S(C_1) = S(C_2) = S(C_3) = FL, P1.myseq = P2.myseq = P3.myseq=1.$
- (Some outside node sends a message (FLEAD, 32) to P3)
- $-S(C_1) = S(C_2) = S(C_3) = FL, P1.myseq = P2.myseq = 1, P3.myseq=32.$
- (P3 ignores all messages from the root until its sequence number reaches 32) \rightarrow P3 timeouts before this happens
- $-S(C_1) = S(C_2) = FL, S(C_3) = NFL, P1.myseq = P2.myseq = 1, P3.myseq=0.$

Non-Interference Lemma for FTSP

FL NFL NFL

Counterexample to $FG\phi$

$$-S(C_1) = S(C_2) = S(C_3) = FL, P1.myseq = P2.myseq = P3.myseq=1.$$

- (Some outside node sends a message (FLEAD, 32) to P3)
- $-S(C_1) = S(C_2) = S(C_3) = FL, P1.myseq = P2.myseq = 1, P3.myseq=32.$
- (P3 ignores all messages from the root until its sequence number reaches 32) \rightarrow P3 timeouts before this happens
- $-S(C_1) = S(C_2) = FL, S(C_3) = NFL, P1.myseq = P2.myseq = 1, P3.myseq=0.$

Non-interference lemma

 $\psi = \forall i, \texttt{Pi.myleader} = \texttt{FL} \Rightarrow \texttt{Pi.myseq} \leq \texttt{P1.myseq}.$

Theorem [McMillan 2001, Chou, Mannavan, Park 2004]

If all transitions of the concrete model are strengthened by non-interference lemma ψ , then both the specification ϕ , and the lemma ψ can be model checked in the absraction of the strengthening.

Conclusion

- Few results on parameterized model checking of non-identical non-symmetric systems with arbitrary topologies
- Decidability versus efficiency
- An efficient solution that combines several ideas
- Other protocols whose spec depends on an information being propagated

Next objectives:

- Also prove clock precision bounds under hypotheses on environment conditions
- Extend the theory of abstraction & refinement to probabilistic systems
- Automatize abstractions

Related Works

Parameterized symmetric systems: cache coherence protocols

• Isolating two components (among *K*), and applying existential abstraction

FLASH Cache coherence protocol [McMillan 2001].

Related Works

Parameterized **symmetric** systems: cache coherence protocols

• Isolating two components (among *K*), and applying existential abstraction

FLASH Cache coherence protocol [McMillan 2001].

• Counter Abstraction: Count how many components are at a given state, and abstract as $\{0,1,\infty\}$

[Pnueli, Xu, Zuck 2002]
Related Works

Parameterized **symmetric** systems: cache coherence protocols

• Isolating two components (among *K*), and applying existential abstraction

FLASH Cache coherence protocol [McMillan 2001].

• Counter Abstraction: Count how many components are at a given state, and abstract as $\{0,1,\infty\}$

[Pnueli, Xu, Zuck 2002]

• Environment Abstraction: the isolated components are seen as reference points and can change

[Clarke, Talupur, Veith 2008]

Related Works

Parameterized **symmetric** systems: cache coherence protocols

• Isolating two components (among K), and applying existential abstraction

FLASH Cache coherence protocol [McMillan 2001].

• Counter Abstraction: Count how many components are at a given state, and abstract as $\{0,1,\infty\}$

[Pnueli, Xu, Zuck 2002]

• Environment Abstraction: the isolated components are seen as reference points and can change

[Clarke, Talupur, Veith 2008]

• Similar abstraction + refinement by **non-interference lemmas**

[Chou, Mannava, Park 2004]

- Given a spurious counterexample, guess an invariant ϕ that excludes it
- The model is constrained by ϕ which yields a finer abstraction
- "Lemma" ϕ itself can be proven on the constrained model

Automatic computation of the best refinement [Bingham 2008]

System: Shared variables *a*, *b* and identical components C_1, \ldots, C_k, \ldots : b = 0, b = 1 a = 1 a = 0 b = 0 a = 0a = 0

System: Shared variables *a*, *b* and identical components C_1, \ldots, C_k, \ldots : b = 0, b = 1 a = 1 a = 0 b = 0 a = 0 a = 0a = 0

Environment Abstraction: Keep variables *a*, *b* and one component C_1 States are tuples: v_a, v_b, q

System: Shared variables *a*, *b* and identical components C_1, \ldots, C_k, \ldots : b = 0, b = 1 a := 1 a := 0 a := 0 a := 0a := 0

Environment Abstraction: Keep variables *a*, *b* and one component C_1 States are tuples: v_a, v_b, q

Initial abstract state: 0,0,s represents all states

$$a = 0, b = 0, S(C_1) = s, S(C_2) = x_2, S(C_3) = x_3, \dots, S(C_k) = x_k,$$

for all $k \geq 1$, and all x_2, \ldots, x_k .

System: Shared variables *a*, *b* and identical components C_1, \ldots, C_k, \ldots : b = 0, b := 1 a := 1 a := 0 b := 0 a := 0a := 0

Environment Abstraction: Keep variables *a*, *b* and one component C_1 States are tuples: v_a, v_b, q

Initial abstract state: 0,0,s represents all states

$$a = 0, b = 0, S(C_1) = s, S(C_2) = x_2, S(C_3) = x_3, \dots, S(C_k) = x_k,$$

for all $k \geq 1$, and all x_2, \ldots, x_k .

Existential Abstraction: $v_a, v_b, q \rightarrow v'_a, v'_b, q'$ **iff** \exists a transition in a concrete system that maps to this abstraction

Ocan Sankur

Model Checking of Distributed Protocols

28 / 30

System: Shared variables *a*, *b* and identical components C_1, \ldots, C_k, \ldots : b = 0, b = 1 a := 1 a := 0 a := 0 a := 0a := 0

Environment Abstraction: Keep variables *a*, *b* and one component C_1 States are tuples: v_a, v_b, q

Initial abstract state: 0,0,s represents all states

$$a = 0, b = 0, S(C_1) = s, S(C_2) = x_2, S(C_3) = x_3, \dots, S(C_k) = x_k,$$

for all $k \geq 1$, and all x_2, \ldots, x_k .

Existential Abstraction: $v_a, v_b, q \rightarrow v'_a, v'_b, q'$ iff $\exists k, \exists x_2, x'_2, \dots, x_k, x'_k$. $(v_a, v_b, q, x_2, \dots, x_k) \rightarrow (v'_a, v'_b, q', x'_2, \dots, x'_k)$. Qcan Sankur Model Checking of Distributed Protocols 28 / 30

Counterexample present in all abstractions for all $k \ge 1$

The following invariant explains why the counterex is spurious: $\psi = \forall i, j, i \neq j \Rightarrow \neg (S(C_i) \in \{t, u\} \land S(C_j) \in \{t, u\}).$

Counterexample present in all abstractions for all $k \ge 1$

The following invariant explains why the counterex is spurious: $\psi = \forall i, j, i \neq j \Rightarrow \neg (S(C_i) \in \{t, u\} \land S(C_j) \in \{t, u\}).$

Strengthened Abstraction: $v_a, v_b, q \rightarrow v'_a, v'_b, q'$ iff $\exists k, \exists x_2, x'_2, \dots, x_k, x'_k$. $(v_a, v_b, q, x_2, \dots, x_k) \models \psi$ and $(v_a, v_b, q, x_2, \dots, x_k) \rightarrow (v'_a, v'_b, q', x'_2, \dots, x'_k)$.

$$\psi, b == 0, b := 1 \quad \psi, a := 1$$

$$(s) \quad \psi, b := 0 \quad \psi, a := 0$$

$$\psi, b := 0 \quad \psi, a := 0$$

Remark

If ψ is invariant in the concrete system \mathcal{A} (i.e. $\operatorname{Reach}(\mathcal{A}) \subseteq \psi$), then

 $\mathsf{strengthen}(\mathcal{A},\psi)\models\phi \Leftrightarrow \mathcal{A}\models\phi$

$$\psi, b == 0, b := 1 \quad \psi, a := 1$$

$$(s) \quad \psi, b := 0 \quad \psi, a := 0$$

$$\psi, b := 0 \quad \psi, a := 0$$

Remark

If ψ is invariant in the concrete system \mathcal{A} (i.e. $\operatorname{Reach}(\mathcal{A}) \subseteq \psi$), then

 $\mathsf{abstract}(\mathsf{strengthen}(\mathcal{A},\psi)) \models \phi \Rightarrow \mathcal{A} \models \phi$

$$\psi, b == 0, b := 1 \quad \psi, a := 1$$

$$(s) \quad \psi, b := 0 \quad \psi, a := 0$$

$$\psi, b := 0 \quad \psi, a := 0$$

Remark

If ψ is invariant in the concrete system \mathcal{A} (i.e. $\operatorname{Reach}(\mathcal{A}) \subseteq \psi$), then

 $\mathsf{abstract}(\mathsf{strengthen}(\mathcal{A},\psi)) \models \phi \Rightarrow \mathcal{A} \models \phi$

Is ψ an invariant?

For safety properties: strengthen(\mathcal{A}, ψ) $\models \psi \Leftrightarrow \mathcal{A} \models \psi$

So one can check this on the strengthened abstraction!

$$\psi, b == 0, b := 1 \quad \psi, a := 1$$

$$(s) \quad \psi, b := 0 \quad \psi, a := 0$$

$$\psi, b := 0 \quad \psi, a := 0$$

Remark

If ψ is invariant in the concrete system \mathcal{A} (i.e. $\operatorname{Reach}(\mathcal{A}) \subseteq \psi$), then

 $\mathsf{abstract}(\mathsf{strengthen}(\mathcal{A},\psi)) \models \phi \Rightarrow \mathcal{A} \models \phi$

Is ψ an invariant?

For safety properties: strengthen(\mathcal{A}, ψ) $\models \psi \Leftrightarrow \mathcal{A} \models \psi$

So one can check this on the strengthened abstraction!

Verification task: abstract(strengthen(\mathcal{A}, ψ)) \models $\mathsf{G}\neg \mathrm{err} \land \psi$.

If there is again a spurious cex, then find ψ_2 , and check abstract(strengthen($\mathcal{A}, \psi \land \psi_2$)) \models G $\neg err \land \psi \land \psi_2$.

Ocan Sankur

Model Checking of Distributed Protocols

30 / 30