A Model Checking Case Study

Flooding Time Synchronization Protocol

Ocan Sankur

Univ Rennes, CNRS, Inria

Model Checking of Distributed Protocols 1/30

Formal Methods

Development cycle for general-purpose systems
@ Write code
@ Code review, testing
© Deploy
@ Fix bugs, and provide regular updates

Model Checking of Distributed Protocols 2/30

Formal Methods

Development cycle for general-purpose systems
@ Write code
@ Code review, testing
© Deploy
@ Fix bugs, and provide regular updates

Is step 4 feasible for all systems?

Model Checking of Distributed Protocols 2/30

Formal Methods

Development cycle for general-purpose systems
@ Write code
@ Code review, testing
© Deploy
@ Fix bugs, and provide regular updates

Is step 4 feasible for all systems?
Aerospatial:

FIELDS
Antenna (4)

SIS Suite
(EPI Low, EPI Hi)

FIELDS
Magnetometers (3)

WISPR

Model Checking of Distributed Protocols 2/30

Formal Methods

Development cycle for general-purpose systems
© Write code
@ Code review, testing
© Deploy
@ Fix bugs, and provide regular updates

Is step 4 feasible for all systems?
Health:

S

Model Checking of Distributed Protocols 2/30

Formal Methods

Development cycle for general-purpose systems
@ Write code
@ Code review, testing
© Deploy
@ Fix bugs, and provide regular updates

Is step 4 feasible for all systems?
Transportation (train networks, autonomous vehicles, airplanes)

Model Checking of Distributed Protocols 2/30

Mars Rover

@ Developed in 3 years, for about 150 million dollars

@ The rover landed successfully in Mars but had several total system
resets

@ Loss of mission time

@ Engineers were able to fix the bug by an update!

Model Checking of Distributed Protocols 3/30

Ariane 5

@ An Ariane rocket launched in 1996 has exploded shortly after the
launch

@ Previous missions were successful

@ 370 million euros

Model Checking of Distributed Protocols 4 /30

Ariane 5

@ An Ariane rocket launched in 1996 has exploded shortly after the
launch

@ Previous missions were successful

@ 370 million euros

Other famous bugs: Hardware bugs, Toyota unintended acceleration
bug(?), infusion pumps, train systems

Model Checking of Distributed Protocols 4 /30

Formal Verification

Formal verification

Input: System or a model
Output: Check whether all possible behaviors are correct

~ Exhaustive testing

Verification [| Deployment

_

Specification

Model Checking of Distributed Protocols 5/ 30

Application Domains

@ Hardware industry

@ Embedded systems

o Communication systems

e Transportation (Automative, aerospatial, trains)

Critical areas such as aerospatial industry require certification:

A rigorous development methodology including formal verification must be
followed

Model Checking of Distributed Protocols 6 /30

Application Domains

Hardware industry

°
@ Embedded systems

o Communication systems
°

Transportation (Automative, aerospatial, trains)

Critical areas such as aerospatial industry require certification:
A rigorous development methodology including formal verification must be
followed

More and more used in non-critical software development!

Model Checking of Distributed Protocols 6 /30

Model Checking
Model-checking

?

}': Q@ is reachable

The model is often a transition system: graph of configurations
Goal: Check the specification on all paths in this graph

Model Checking of Distributed Protocols 7 /30

Model Checking

Model-checking

?

- .

Q@ is reachable

The model is often a transition system: graph of configurations
Goal: Check the specification on all paths in this graph

doors=open
moving=no

Ocan Sankur

moving=no
opening

doors=closed
<—’—/ moving=yes

Model Checking of Distributed Protocols 7 /30

sensor

sensor

Model Checking

Theoretical Definition

Given a transition system T, and specification ¢, check whether the
executions of T satisfy ¢.

When T is an automaton, and ¢ safety condition, model checking is a
simple graph traversal.

Model Checking of Distributed Protocols 8 /30

Model Checking

Theoretical Definition

Given a transition system T, and specification ¢, check whether the
executions of T satisfy ¢.

When T is an automaton, and ¢ safety condition, model checking is a
simple graph traversal.
However, in practice, state-space explosion due to
@ Use of Boolean or discrete variables (think of a 64-bit integer variable)
@ Parallel composition of components

@ Time constraints, ...

Model Checking of Distributed Protocols 8 /30

Model Checking - 2

Model checking is about controlling the state space explosion.
Each algorithm and application must justify how this is handled. E.g.

@ Choice of an efficient state-space representation
@ Reduction of the state space: abstractions

Model Checking of Distributed Protocols 9 /30

Case Study: Clock Synchronization Protocol

@ Clocks on all electronics are not identical and sensitive to
temperature

@ Algorithms are used to synchronize clocks over networks

Router

Client
Transmission Media/% Hub Server
Bridge -

B =p 3 2

Client Client

Repeater Client

» This makes sure machines agree on a common time: collaborative
platforms, social networks, wireless sensor networks

Model Checking of Distributed Protocols 10 / 30

Case Study: Clock Synchronization Protocol

@ Clocks on all electronics are not identical and sensitive to
temperature

@ Algorithms are used to synchronize clocks over networks

Router

Client
Transmission Media/% Hub Server
Bridge -

B =p 3 2

Client Client

Repeater Client

» This makes sure machines agree on a common time: collaborative
platforms, social networks, wireless sensor networks

Model Checking of Distributed Protocols 10 / 30

Parameterized Model Checking

Goal: Model check a given protocol on all possible network topologies

ONGA S

UUUU @ g XX,

Model Checking of Distributed Protocols 11 /30

Parameterized Model Checking

Goal: Model check a given protocol on all possible network topologies

ONGA S

covove % 0%

For all number of participants, and all topologies, check all executions

Model Checking of Distributed Protocols 11 /30

Flooding-Time Synchronization Protocol (FTSP)

Leader Election

From all possible configurations a unique leader machine is eventually
elected

FTSP
@ Maintains a unique leader, recovers in case of link/node failures

@ Smoothly synchronizes the clocks over the network with the clock of
the leader

We consider the leader election part of FTSP: Verify that a unique leader
is eventually elected

Model Checking of Distributed Protocols 12 / 30

Flooding-Time Synchronization Protocol (FTSP)

— Nodes have unique identifiers but execute the same program

— Each node wakes up with period P and sends a message to its neighbors
— The network eventually elects the node with the least ID as the leader
— Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

Initially
Leader 7

Leader—

Model Checking of Distributed Protocols 13 /30

Flooding-Time Synchronization Protocol (FTSP)

— Nodes have unique identifiers but execute the same program

— Each node wakes up with period P and sends a message to its neighbors
— The network eventually elects the node with the least ID as the leader
— Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

T|meout
Leader 1

[Leader=2]

Leader 3

Model Checking of Distributed Protocols 13 /30

Flooding-Time Synchronization Protocol (FTSP)

— Nodes have unique identifiers but execute the same program

— Each node wakes up with period P and sends a message to its neighbors
— The network eventually elects the node with the least ID as the leader
— Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

2 communlcates with 3

Leader 1
[Leader=2]

Leader 2

Model Checking of Distributed Protocols 13 /30

Flooding-Time Synchronization Protocol (FTSP)

— Nodes have unique identifiers but execute the same program

— Each node wakes up with period P and sends a message to its neighbors
— The network eventually elects the node with the least ID as the leader
— Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

1 communlcates with 3

Leader 1
[Leader=2]

Leader 1

Model Checking of Distributed Protocols 13 /30

Flooding-Time Synchronization Protocol (FTSP)

— Nodes have unique identifiers but execute the same program

— Each node wakes up with period P and sends a message to its neighbors
— The network eventually elects the node with the least ID as the leader
— Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

2 communicates with 3: Ignored!

Leader 1
[Leader=2]

Leader 1

Model Checking of Distributed Protocols 13 /30

Flooding-Time Synchronization Protocol (FTSP)

— Nodes have unique identifiers but execute the same program

— Each node wakes up with period P and sends a message to its neighbors
— The network eventually elects the node with the least ID as the leader
— Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

3 communicates with 2: Convergence!

Leader 1
[Leader—1]

Leader 1

Model Checking of Distributed Protocols 13 /30

Flooding-Time Synchronization Protocol (FTSP)

— Nodes have unique identifiers but execute the same program

— Each node wakes up with period P and sends a message to its neighbors
— The network eventually elects the node with the least ID as the leader
— Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

Leader 1

Leader 1

Message content: (leader ID ¢, sequence number s)

Process ignores message if its leader is < ¢ or if its leader is ¢ but has
already seen a message with s’ > s.
Model Checking of Distributed Protocols 13 /30

Simplified code
#define TIMEOUT 8
extern byte ID;
byte heartBeats;
byte myleader;
byte myseq;

chan out;

void (byte 1i, byte si) {
if(1i < myleader || (11 == myleader && si > myseq)){
myleader = 1i;
myseq = si;
heartBeats = 0;

}
}

void () {
if(heartBeats >= TIMEOUT){
myleader = ID;
myseq = 0,
heartBeats = 0;
} else heartBeats++;
o!(myleader, myseq);
if(myleader == ID){ myseq++; }
}

Our model: Derived from the TinyOS implementation

Omitted here but available in the model: sample threshold, ignore period
Ocan Sankur Model Checking of Distributed Protocols 14 / 30

Previous Verification Results

Previous work: Model checking that a unique leader is eventually elected
(Spin, FDR3, Uppaal).

o A few fixed topologies. The largest verified topology (in 1 hour):

@ Perfectly synchronized clocks, no clock deviations!
@ Synchronous message broadcast: when a process sends a message, all
other nodes stop and listen

Kusy, Abdelwahed 2006, Mclnnes 2009, Tan, Zhao, Wang 2010

Model Checking of Distributed Protocols 15 / 30

Previous Verification Results

Previous work: Model checking that a unique leader is eventually elected
(Spin, FDR3, Uppaal).

o A few fixed topologies. The largest verified topology (in 1 hour):

@ Perfectly synchronized clocks, no clock deviations!
@ Synchronous message broadcast: when a process sends a message, all
other nodes stop and listen
Kusy, Abdelwahed 2006, Mclnnes 2009, Tan, Zhao, Wang 2010

Present work

o Arbitrary network topology within given diameter K
(we will go up to K =13)

@ Deviating clocks

@ Synchronous or asynchronous broadcast

Model Checking of Distributed Protocols 15 / 30

Overview of the Talk

FTSP

Previous model checking attempts
Abstraction Idea 1: Anonymization
Abstraction ldea 2: Network abstraction
Clock Deviations

Results

Incremental Proof and Custom Semi-Algorithm

©00000O0CO

Abstraction Refinement

Model Checking of Distributed Protocols 16 / 30

Main Abstraction ldea for Parameterized Verification

How the leader is propagated:

Model Checking of Distributed Protocols 17 / 30

Main Abstraction ldea for Parameterized Verification

How the leader is propagated:

Model Checking of Distributed Protocols 17 / 30

Main Abstraction ldea for Parameterized Verification

How the leader is propagated:

Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

XX
4

Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

Model Checking of Distributed Protocols 17 / 30

Main Abstraction ldea for Parameterized Verification

Abstracting the network:

Model Checking of Distributed Protocols 17 / 30

Main Abstraction ldea for Parameterized Verification

Abstracting the network:

Pick a shortest path from the future leader to some node

Model Checking of Distributed Protocols 17 / 30

Main Abstraction ldea for Parameterized Verification

Abstracting the network:

X

On the right, the gray node can send any message (¢, s) to anyone, as long
as £ is different than the IDs of the red processes.
If the least ID is 1, we check the following property in the small model:

OO(P1.myleader =1 & P2.myleader = 1 & P3.myleader = 1).

This would imply that the property holds on the left for this particular
topology

Model Checking of Distributed Protocols 17 / 30

Main Abstraction ldea for Parameterized Verification

Abstracting the network:

X

On the right, the gray node can send any message (¢, s) to anyone, as long
as £ is different than the IDs of the red processes.

If the least ID is 1, we check the following property in the small model:

OO(P1.myleader =1 & P2.myleader = 1 & P3.myleader = 1).

Generalization: We want the abstract model to be the same for all
possible choices of the red paths of given length D

Model Checking of Distributed Protocols 17 / 30

Main Abstraction ldea for Parameterized Verification

XX
&

NI

On the right, the gray node can send any message (¢, s) to anyone, as long
as £ is different than the IDs of the red processes.

If the least ID is 1, we check the following property in the small model:

OO(P1.myleader =1 & P2.myleader = 1 & P3.myleader = 1).

Problem: The verification result is valid for a given path and a given
configuration of the identifiers J

Model Checking of Distributed Protocols 17 / 30

1. Anonymization through data abstraction

Goal: Map "unbounded” variables to finite domains

Let FLEAD denote the identifier of the future leader.

Let NONFLEAD be a symbol to represent any other id.

Node ldentifiers

Map all identifier variables i.e. myleader and 1i to {FLEAD, NONFLEAD}.

Some expressions and assignments become non-deterministic:
— Expression “1i < myleader"” becomes:

1li = FLEAD A myleader = NONFLEAD : true

1i — NONFLEAD A myleader — FLEAD : false

1i = myleader = FLEAD : false
otherwise :{true,false}.

(We also map integer variables to finite domains)

Model Checking of Distributed Protocols 18 / 30

1. Anonymization through data abstraction

Goal: Map "unbounded” variables to finite domains

Let FLEAD denote the identifier of the future leader.

Let NONFLEAD be a symbol to represent any other id.

Node ldentifiers

Map all identifier variables i.e. myleader and 1i to {FLEAD, NONFLEAD}.

Some expressions and assignments become non-deterministic:
— Expression “1i < myleader"” becomes:

1li = FLEAD A myleader = NONFLEAD : true

1i — NONFLEAD A myleader — FLEAD : false

1i = myleader = FLEAD : false
otherwise :{true,false}.

(We also map integer variables to finite domains)

@ The abstract protocol is an over-approximation

Model Checking of Distributed Protocols 18 / 30

1. Anonymization through data abstraction

Goal: Map "unbounded” variables to finite domains

Let FLEAD denote the identifier of the future leader.

Let NONFLEAD be a symbol to represent any other id.

Node ldentifiers

Map all identifier variables i.e. myleader and 1i to {FLEAD, NONFLEAD}.

Some expressions and assignments become non-deterministic:
— Expression “1i < myleader"” becomes:

1li = FLEAD A myleader = NONFLEAD : true

1i — NONFLEAD A myleader — FLEAD : false

1i = myleader = FLEAD : false
otherwise :{true,false}.

(We also map integer variables to finite domains)

@ The abstract protocol is an over-approximation
@ The protocol does not depend on precise identifiers but only on FLEAD

Model Checking of Distributed Protocols 18 / 30

Back to Shortest-Path Abstraction

M

><h X FLNFL NFL
X T %

Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

M

h FL NFL NFL
The abstraction is identical:

@ For any configuration of the identifiers

Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

\ h FL NFL NFL

<] N

M

The abstraction is identical:

@ For any configuration of the identifiers

Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

\ h FL NFL NFL

<] N

M

The abstraction is identical:
@ For any configuration of the identifiers

@ For any chosen path

Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

3 2 FL NFL NFL
—{ + —— @) ——

The abstraction is identical:

M

@ For any configuration of the identifiers

@ For any chosen path

Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

3 2 FL NFL NFL
—{ + — @) ——
AN 1/ Ny

The abstraction is identical:

M

@ For any configuration of the identifiers

@ For any chosen path in any graph

Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

3 2 FL NFL NFL

N

M

AN

The abstraction is identical:

\

@ For any configuration of the identifiers
@ For any chosen path in any graph

Fix parameter D as the max. distance from the future leader.

Abstract model Ap over-approximates the nodes within distance of D
from future leader in all networks

Then, Ap = ¢ means ¢ holds at all nodes at distance < D.

Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

3 2 FL NFL NFL
——0

N N

M

The abstraction is identical:
@ For any configuration of the identifiers
@ For any chosen path in any graph

Fix parameter D as the max. distance from the future leader.

Abstract model Ap over-approximates the nodes within distance of D
from future leader in all networks

Then, Ap = ¢ means ¢ holds at all nodes at distance < D.

Main idea but needs several other tricks to work

Model Checking of Distributed Protocols 19 / 30

Asynchrony and Clock Deviations

Distributed system: we need to define a scheduler
— Each process is activated with “identical” period P + ¢

— Not synchronous, not completely asynchronous neither

Model Checking of Distributed Protocols 20 / 30

Asynchrony and Clock Deviations

Distributed system: we need to define a scheduler
— Each process is activated with “identical” period P + ¢
— Not synchronous, not completely asynchronous neither

Approximate Synchrony (Caspi 2000, Desai et al. CAV2015)

Fix parameter A. Let N;(t) denote the number of times process i has
been activated at time t.

Scheduler: Allow all interleavings between processes so that
|Ni(t) — Nj(t)| < A for all i, j, t.

Model Checking of Distributed Protocols 20 / 30

Asynchrony and Clock Deviations

Distributed system: we need to define a scheduler
— Each process is activated with “identical” period P + ¢
— Not synchronous, not completely asynchronous neither

Approximate Synchrony (Caspi 2000, Desai et al. CAV2015)

Fix parameter A. Let N;(t) denote the number of times process i has
been activated at time t.

Scheduler: Allow all interleavings between processes so that
|Ni(t) — Nj(t)| < A for all i, j, t.

Given P, €, A, there exists N = (P, e, A) such that the above scheduler
over-approximates system behaviors given by deviating clocks.

Model Checking of Distributed Protocols 20 / 30

Summary of Abstractions and Specification

@ Unbounded variables and identifier variables
— Nodes NONFLEAD become anonymous

@ Shortest-Path Abstraction:
FL NFL NFL

© Approximately Synchronous Scheduler

A =1,P€[29.7,30.3] for N = 110 steps
@ Specification: Given D, find N such that

D
Ap = F<nG(/\ Pi.myleader = FLEAD)
i=1

Model Checking of Distributed Protocols 21 /30

Experimental Results for FTSP

Tool: A custom algorithm implemented within NuSMV
https://github.com/osankur/nusmv/tree/ftsp

(Other tools we tried: Spin, CMurphi, ITS-tools)

synchronous | asynchronous

54 16s 63 | 65mins
67 | 76s | 10| 10
107 [13mins | TO | 710
E.g. 2D grids with 169 nodes, or 3D grids in 2197 nodes.
— Clock rates within 1 + 1072 (period [29.7,30.3]).

D] N] time N T time

1 8 Os 8 0Os

2| 14 Is 14 1s D: Max distance from FLEAD

3 23 1s 25 | 28s N: Number of steps t

R % 30 1 1305 : Number of steps to convergence
5

6

7

Error recovery Our models are initialized at arbitrary states: in case of any
failure, the protocol recovers in N steps

Next: Incremental verification technique + a custom algorithm

Model Checking of Distributed Protocols 22 /30

https://github.com/osankur/nusmv/tree/ftsp

Optimization: Incremental Verification Strategy

Observation

) FL NFL NFL
The abstraction Ap proves the property for all nodes — @—
within D of the future leader in all network topologies. \ ‘ /

Model Checking of Distributed Protocols 23 /30

Optimization: Incremental Verification Strategy

Observation

_ FL NFL NFL
The abstraction Ap proves the property for all nodes

within D of the future leader in all network topologies. \ ‘ /

D-radius: the nodes within a distance of D from the future leader.

Incremental Verification For Increasing D
Forall D=1...,

@ Initialize the system Ap nondeterministically at states where the
(D — 1)-radius already satisfies Aj<p_1Pi.myleader = FLEAD.

® Model check Ap |= F<n,G(PD.myleader = FLEAD).

Model Checking of Distributed Protocols 23 /30

Optimization: Incremental Verification Strategy

Observation

_ FL NFL NFL
The abstraction Ap proves the property for all nodes

within D of the future leader in all network topologies. \ ‘ /

D-radius: the nodes within a distance of D from the future leader.

Incremental Verification For Increasing D
Forall D=1...,

@ Initialize the system Ap nondeterministically at states where the
(D — 1)-radius already satisfies Aj<p_1Pi.myleader = FLEAD.

® Model check Ap |= F<n,G(PD.myleader = FLEAD).

Substantial gain in time and memory: processes 1,...,D — 1 are simplified
since they were proven to satisfy the spec forever

Model Checking of Distributed Protocols 23 /30

v

Optimization: Incremental Verification Strategy

Observation

_ FL NFL NFL
The abstraction Ap proves the property for all nodes

within D of the future leader in all network topologies. \ ‘ /

D-radius: the nodes within a distance of D from the future leader.

Incremental Verification For Increasing D
Forall D=1...,

@ Initialize the system Ap nondeterministically at states where the
(D — 1)-radius already satisfies Aj<p_1Pi.myleader = FLEAD.

® Model check Ap |= F<n,G(PD.myleader = FLEAD).

Then in N = Ny + Ny + ...+ Np number of steps, the whole D-radius
agree on FLEAD

Model Checking of Distributed Protocols 23 /30

Optimization: Semi-Algorithm for F<yGo

Standard algorithm to check FG¢

Convert formula to Buchi automaton, forward exploration, keep all seen
states to guarantee termination.

— R, R>, ..., R where R; are states reachable in j steps

— Stop when R, C U;R;, or when an accepting lasso is found

Model Checking of Distributed Protocols 24 /30

Optimization: Semi-Algorithm for F<yGo

Standard algorithm to check FGo

Convert formula to Buchi automaton, forward exploration, keep all seen
states to guarantee termination.

— R1, R, ..., Rx where R; are states reachable in j steps

— Stop when R, C U;R;, or when an accepting lasso is found

— Even the lasso starts after 1000 steps, we keep Ry, ..., Rio00-
— Consumes memory and impairs BDD reordering
— To compute best N, need to run the tool log(/N) times

Model Checking of Distributed Protocols 24 /30

Optimization: Semi-Algorithm for F<nGo

Standard algorithm to check FGo

Convert formula to Buchi automaton, forward exploration, keep all seen
states to guarantee termination.

— R1, R, ..., Rx where R; are states reachable in j steps

— Stop when R, C U;R;, or when an accepting lasso is found

— Even the lasso starts after 1000 steps, we keep Ry, ..., Rio00-
— Consumes memory and impairs BDD reordering
— To compute best N, need to run the tool log(/N) times

Custom Semi-Algorithm

— Start exploring but forget previous states: R; (delete Ry, ..., Ri_1)
— Whenever R; C ¢, start remembering R;, Ri11,..., R;

—If Rj - Uingijv RETURN i

- If Rj € ¢, delete R;, ..., Rj_1, and continue

Significant performance improvement

Model Checking of Distributed Protocols 24 /30

Non-Interference Lemma for FTSP

FL NFL NFL
Counterexample to FG¢
- 5(G) = S(G) = S(G) =FL,P1.myseq = P2.myseq = P3.myseq=1.
— (Some outside node sends a message (FLEAD, 32) to P3)
- 5(G) =5(G) = S(G) =FL,P1.myseq = P2.myseq = 1, P3.myseq=32.
— (P3 ignores all messages from the root until its sequence number reaches 32)

— P3 timeouts before this happens
- 5(G) = S(G) =FL,5(G) = NFL, Pl.myseq = P2.myseq = 1, P3.myseq=0.

Model Checking of Distributed Protocols 25 /30

Non-Interference Lemma for FTSP

FL NFL NFL
Counterexample to FG¢
- 5(G) = S(G) = S(G) =FL,P1.myseq = P2.myseq = P3.myseq=1.
— (Some outside node sends a message (FLEAD, 32) to P3)
- 5(G) =5(G) = S(G) =FL,P1.myseq = P2.myseq = 1, P3.myseq=32.
— (P3 ignores all messages from the root until its sequence number reaches 32)

— P3 timeouts before this happens
- 5(G) = S(G) =FL,5(G) = NFL, Pl.myseq = P2.myseq = 1, P3.myseq=0.

Non-interference lemma

1 = Vi,Pi.myleader = FL = Pi.myseq < P1.myseq.

Theorem [McMillan 2001, Chou, Mannavan, Park 2004]

If all transitions of the concrete model are strengthened by non-interference lemma 1),
then both the specification ¢, and the lemma v can be model checked in the absraction
of the strengthening.

Model Checking of Distributed Protocols 25 /30

Conclusion

o Few results on parameterized model checking of
non-identical non-symmetric systems with arbitrary topologies

@ Decidability versus efficiency
@ An efficient solution that combines several ideas
@ Other protocols whose spec depends on an information being

propagated
Next objectives:

@ Also prove clock precision bounds under hypotheses on environment
conditions

@ Extend the theory of abstraction & refinement to probabilistic systems

@ Automatize abstractions

Model Checking of Distributed Protocols 26 / 30

Related Works

Parameterized symmetric systems: cache coherence protocols

e Isolating two components (among K), and applying existential

abstraction
FLASH Cache coherence protocol [McMillan 2001].

Model Checking of Distributed Protocols 27 / 30

Related Works

Parameterized symmetric systems: cache coherence protocols

e Isolating two components (among K), and applying existential

abstraction
FLASH Cache coherence protocol [McMillan 2001].

@ Counter Abstraction: Count how many components are at a given

state, and abstract as {0, 1,00}
[Pnueli, Xu, Zuck 2002]

Model Checking of Distributed Protocols 27 / 30

Related Works

Parameterized symmetric systems: cache coherence protocols

e Isolating two components (among K), and applying existential

abstraction
FLASH Cache coherence protocol [McMillan 2001].

@ Counter Abstraction: Count how many components are at a given
state, and abstract as {0, 1,00}
[Pnueli, Xu, Zuck 2002]
o Environment Abstraction: the isolated components are seen as

reference points and can change
[Clarke, Talupur, Veith 2008]

Model Checking of Distributed Protocols 27 / 30

Related Works

Parameterized symmetric systems: cache coherence protocols

e Isolating two components (among K), and applying existential

abstraction
FLASH Cache coherence protocol [McMillan 2001].

@ Counter Abstraction: Count how many components are at a given
state, and abstract as {0, 1, 00}
[Pnueli, Xu, Zuck 2002]
o Environment Abstraction: the isolated components are seen as
reference points and can change
[Clarke, Talupur, Veith 2008]

@ Similar abstraction + refinement by non-interference lemmas
[Chou, Mannava, Park 2004]
— Given a spurious counterexample, guess an invariant ¢ that excludes it
— The model is constrained by ¢ which yields a finer abstraction
— “Lemma” ¢ itself can be proven on the constrained model

Automatic computation of the best refinement [Bingham 2008]

Model Checking of Distributed Protocols 27 / 30

On Refinement with Non-Interference Lemmas [cmp 2004]

System: Shared variables a, b and identical components Cy, ..., Cy, .. .:

==0,b:=1 5:—1

®/_>®/_\C a==0 —

Model Checking of Distributed Protocols 28 / 30

On Refinement with Non-Interference Lemmas [cmp 2004]

System: Shared variables a, b and identical components Cy, ..., Cy, .. .:
b==0,b:=1 5:.=1

®/_>®/_\C a==0 —

b:=0 a:=0

States are tuples:

Environment Abstraction: Keep variables a, b and one component C; J

Model Checking of Distributed Protocols 28 / 30

On Refinement with Non-Interference Lemmas [cmp 2004]

System: Shared variables a, b and identical components Cy, ..., Cy, .. .:
==0,b:=1 a:=1

®/_>®/_\C a==0 —

b:=0 a:=0

Environment Abstraction: Keep variables a, b and one component C;

States are tuples:

Initial abstract state: represents all states
a = 0, b= 0, S(Cl) =S, S(Cz) = X2,S(C3) = &hcoooo S(Ck) = Xk,

for all k > 1, and all xo, ..., xk.

Model Checking of Distributed Protocols 28 / 30

On Refinement with Non-Interference Lemmas [cmp 2004]

System: Shared variables a, b and identical components Cy, ..., Cy, .. .:
==0,b:=1 a:=1

®/\—>®/_\C a==0 —

b:=0 a:=0

Environment Abstraction: Keep variables a, b and one component (;

States are tuples:

Initial abstract state: represents all states
a = 0, b= 07 S(Cl) =S, 5(C2) = X2, S(C3) = X3y, S(Ck) = Xk,

for all k > 1, and all xo, ..., xk.

Existential Abstraction: — (v, v, q
iff 3 a transition in a concrete system that maps to this abstraction

Model Checking of Distributed Protocols 28 / 30

On Refinement with Non-Interference Lemmas [cmp 2004]

System: Shared variables a, b and identical components Cy, ..., Cy, .. .:
==0,b:=1 a:=1

®/\—>®/_\C a==0 —

b:=0 a:=0

Environment Abstraction: Keep variables a, b and one component (;

States are tuples:

Initial abstract state: represents all states
a = 0, b= 07 S(Cl) =S, 5(C2) = X2, S(C3) = X3y, S(Ck) = Xk,

for all k > 1, and all xo, ..., xk.

Existential Abstraction: — (v, v, q

0 / / / / / / /
iff 3k, Ixo, X5, . .. Xk, Xp- (Vay Vb, @5 X2y -y Xk) = (VD v, @' X5, .o, X))

Model Checking of Distributed Protocols 28 /30

On Refinement with Non-Interference Lemmas [cmp 2004]

b==0,b:=1 ,._;

a ==

b:=0 a:=0
The Abstract System

00s 01t
! \\\\
! RN
0ls 10s

29 / 30

Model Checking of Distributed Protocols

On Refinement with Non-Interference Lemmas [cmp 2004]

b==0,b:=1 ,._;

b:=0 a:=0
The Abstract System

00s 01t
! \\\\

Counterexample present in all abstractions for all kK > 1

The following invariant explains why the counterex is spurious:
v =Vij,i#j=~(5(G) € {t,u} ANS(G) € {t,u}).

Model Checking of Distributed Protocols 29 / 30

On Refinement with Non-Interference Lemmas [cmp 2004]

UV, b==0,b:=1y,a:=1

v, b:=0 P,a:=0

The Abstract System

00s %Olt%
P e
0is

Counterexample present in all abstractions for all kK > 1

The following invariant explains why the counterex is spurious:
W=V, #)= ~(5(G) € {t.u} A S(G) € {t,u}).

Strengthened Abstraction: [v,, vy, q| — | V), v[, q’

iff 3k, Ix, X3, . -+, Xk, Xp.- (Va, Vb, G, X2, ..., Xk) E O
/ / / / /

and (Va, Vb, @, X2, ..., xk) = (V5, v, 4, x5, ..., Xp).

Model Checking of Distributed Protocols 29 / 30

On Refinement with Non-Interference Lemmas [cmp 2004]

v,b==0,b:=1 ,a:=1

@AC ba==0 _

P, b:=0 P,a:=0

Remark
If ¢ is invariant in the concrete system A (i.e. Reach(A) C 1), then

strengthen(A,Y) E o < A= ¢

Model Checking of Distributed Protocols 30/ 30

On Refinement with Non-Interference Lemmas [cmp 2004]

v,b==0,b:=1 ,a:=1

@C\/@/_\C ba==0 _

P, b:=0 P,a:=0

Remark
If ¢ is invariant in the concrete system A (i.e. Reach(A) C 1), then

abstract(strengthen(A,¥)) E ¢ = A E ¢

Model Checking of Distributed Protocols 30/ 30

On Refinement with Non-Interference Lemmas [cmp 2004]

Yv,b==0,b:=1 ,a:=1

_/@—»mr

P, b:=0 P,a:=0
Remark

If ¢ is invariant in the concrete system A (i.e. Reach(A) C 1), then

abstract(strengthen(A,¥)) E ¢ = A E ¢

Is ¢/ an invariant?

For safety properties: strengthen(A,v) = < AE 1

So one can check this on the strengthened abstraction!

Model Checking of Distributed Protocols 30/ 30

On Refinement with Non-Interference Lemmas [cmp 2004]

Yv,b==0,b:=1 ,a:=1

®<\/@/—\: ba==0 _

P, b:=0 P,a:=0

Remark
If ¢ is invariant in the concrete system A (i.e. Reach(A) C 1), then

abstract(strengthen(A,¥)) E ¢ = A E ¢

Is ¢/ an invariant?
For safety properties: strengthen(A,v) = < AE 1

So one can check this on the strengthened abstraction!

Verification task: abstract(strengthen(.A,)) | G—err A 9.

If there is again a spurious cex, then find v», and check

abstract(strengthen(.A, ¢ A 102)) = G—err A ¢ A .
Model Checking of Distributed Protocols 30/ 30

	Introduction

